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Longitudinal Motion 1

Acceleration in Periodic Structures

® We consider motion of particles either through a linear structure or in a
circular ring

Always negative
= =N
S N |
) | AT 1 Ap Ap

T T T — 5
T T T T v p p

In both cases, we can adjust the RF
phases such that a particle of nominal

T £ energy arrives at the the same point in
the cycle o,

Ap Ap Goes from negative to
= positive at transition
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Slip Factors and Phase Stability

@ The sign of the slip factor determines the stable region on the RF curve.

n<0 (linacs and below transition) n>0 (above transition)

V(t “bunch” V(t
( ) ( ) Particles with
Particles with lower E arrive
lower E arrive earlier and see
later and see ™, / \ A/ greater V.
greater V. \

\
\ /

\/ Nominal Energy ! Nominal Energy
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Longitudinal Acceleration

® Consider a particle circulating around a ring, which passes through a
resonant accelerating structure each turn

Harmonic number
(integer)

\h
E V=Vosin(wt+a)o), w=2r—
T

A

Period of nominal
energy particle

@ The energy gain that a particle of the nominal energy experiences each

turn is given by . ~— Synchronous phase
E,.=E +el,smg,

Where the this phase will be the same for a particle on each turn

@ A particle with a different energy will have a different phase, which will

evolve each turn as

T

A w,
¢n+1 =¢n +a)rfm_p=¢n +—AE D useAl=

Esﬁz p

USPAS, Hampton, VA, Jan. 26-30, 2015
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Phase Stability

@ Thus the change in energy for this particle for this particle will evolve as
AE,, = AE, +eV,(sing, —sing,)

n+l

® So we can write d¢p w,m

dn ~ Ep’
% = eVO(singbn —sin¢s)
Vs
d ¢ € oy m(sinqﬁn —sin¢s)
Tan T ES
@ Multiply both sides by@ and integrate over dn
dodp V@, (o . \do
J 7 dn= ;—52.[(51n(p(n)— smq)S)Edn
l(d(p T ev, wrfm( _
=l 5o CosSQ +@sing, ) + constant
2\ dn EB’
2
= |(AE) + 2M(cos¢+(psin(ps = constant
wrfm
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Synchrotron motion and Synchrotron Tune

® Going back to our original equation
d? ¢ eV w fm (
12
dn Eyf°

® For small oscillations,

sing, —sing, ~cosg, (4, —¢,)= Agcosg,

® And we have

d’A¢ N eVyw,m

sing, —sin g, )

- cosg, |Ap=0
2 2 s
dn Ep
@ This is the equation of a harmonic oscillator with
eV,w, 1 eV,w,
w, = —cos¢s =V, =— |-————>—C0S¢,
1 Ep’ '\ 27 Ep

Angular frequency

! “synchrotron tune” = number of
wrt turn (not time)

oscillations per turn (usually <<1)
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Longitudinal Emittance

® We want to write things in terms of time and energy. We have can write
the longitudinal equations of motion as

At(n) = wiw(n)
f

dA(n) _ 1 dAg(n) _ m

dn  w, dn  EJp’

AE(n)

@ We can write our general equation of motion for out of time particles as

1 dAd
At(n)= At, cos(2mtv,n)+ v dnl, sin(27v,n)

K

=At, cos(va_Yn) + LAEO sin(27tvsn)

2E By,
AE(n) = ES_WM
dn
=AE, cos(2n'vjn) - M At, sin(2n'vjn)
Longtudinal Motion 1 USPAS, Hampton, VA, Jan. 26-30, 2015 7
@ So we can write
cos(275vsn) Lzsin(Zn'vsn)
At(n) 2nEBV, At
AE() —msin (27rvsn) cos(27rvsn) AF,

™m

@ We see that this is the same form as our equation for longitudinal motion
with a=0, so we immediately write

Ar(n)\ cos(2m/sn) B sin(2m/sn) At
(AE(n)) - (— YL sin(2m/sn) cos(2m/sn) AE
® Where L [ehom
/ 27 s
m 1

/J)L_

4l .
S e AT 2 VL=
2aE BV, eVyw, Esf° cosg,

By
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@ We can define an invariant of the motion as AE
1 2 2
ﬁ_(At) + B, (AE)” =€, = constant t
L
\ Area=mneg|
units

generally eV-s
@ What about the behavior of At and AE separately?

1
& _ [_ e eV, E S’ cosp, J“

m

1

Al gys = VeLﬁL = (_ ul J4

e eV,0 EB? cosp,

@ Note that for linacs or well-below transition

n = —%=>AE o (y3/32)§;m o (1/3/9’2)_%

Longitudinal Motion 1 USPAS, Hampton, VA, Jan. 26-30, 2015 9

Large Amplitude Oscillations

® We can express period of off-energy particles as

at, __ A _
dn p EpB

%(AE” )= e¥sin(w,z, )-sing, |

050 L (ag). L (pp)dn
dg dg dt dg

d d
_dqu(AE)_d?(AE) Use:
B dt dg Codt 2 _ m

o, Pr=-——
dn dt dn " Y el Egp cosg,

e 1€V ES
_[sm¢ sin ¢, ]rfmAE

. . 1
=_[sm¢_sm¢3](l)rzfcos¢xﬁfAE
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@ Continuing

AEd(AE) - _ 59 =sing ]
w;, cosg fB;
@ Integrate
%(AE)Z _ [cos¢+¢sir(1l?.£;l_c;);q2)0 +gsing, |
f sI”L

@ The curve will cross the ¢ axis when AE=0,
which happens at two points defined by

COS@, + ¢ sing, = cosg, +¢, sin g,

AE

o

@ Phase trajectories are possible up to a maximum value of ¢, Consider

—1.£cos¢0 +@,sing,); @, =.1

unbound
bound

Longitudinal Motion 1

Limit is at maximum of

Sjn ¢0,max - Sin ¢s = 0

= ¢0,max = ¢s O

USPAS, Hampton, VA, Jan. 26-30, 2015

Longitudinal Separatirix
® The other bound of motion can be found by
Cos¢l,max +¢],max Sin ¢s = COS(JT—¢S) + ('7[ _¢S)Sin ¢S

=—-cos@, + (7 —¢@,)sing,

® The limiting boundary (separatrix) is defined by

[cosg+ gsing, |+[cosg, — (79 )sing,]

2 2
W, COS @, B

(AE) =2
® The maximum energy of the “bucket” can be

found by setting ¢=¢,

2cos@, +2¢, sin g, —wsing,

2 2
w, cosg.f;

(AEb )2 =2

1—(§—¢s)tan¢s

AE, =2
W, p;

Longitudinal Motion 1

'

%

|

~

T 25 5 7.5 10 12.5 15 17.5

0 2.5 5 7.5 10 12.5 15 17.5
(@)

w

~

2.5 5 7.5 10 12.5 15 17.5
(e)
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Bucket Area

® The bucket area can be found by integrating over the area inside the
separatrix (which | won’t do)

163 |eV-E,
b —f((ps); f((pS)=
w, \ 27h|n
Longitudinal Motion 1 USPAS, Hampton, VA, Jan. 26-30, 2015 13

Transition Crossing
® We learned that for a simple FODO lattice y, =V
so electron machines are always above transition.
® Proton machines are often designed to accelerate through transition.
® As we go through transition (77 < 0)=> (77 = 0)=> (77 > 0)

® Recall
v = 1 - M cos @, AtA;ranS::rz:zonStant
Y 4 E.B 2 : e
ﬁ Tn Al‘max / AEmax :> =
o \/ eV, E B cosp,  AE,,

so these both go to zero at transition.
® To keep motion stable

. b4
cos¢@, > 0 below transition;= 0 < ¢, < 5

.. T
cos@, < 0abovetransition;= — <@ <z
s 2 s

Longitudinal Motion 1 USPAS, Hampton, VA, Jan. 26-30, 2015 14
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Effects at Transition

® As the beam goes through transition, the stable phase must change

1= | ’~ -
|
|/ § /@) g
IR T f
A /

‘ \ ’ /

@ Problems at transition (pretty thorough treatment in S&E 2.2.3)
Beam loss at high dispersion points
Emittance growth due to non-linear effects
Increased sensitivity to instablities

Complicated RF manipulations near transition
Much harder before digital electronics

Longitudinal Motion 1 USPAS, Hampton, VA, Jan. 26-30, 2015 15

Accelerating Structures

® The basic resonant structure is the “pillbox”

E=E(rt)2
B =B(r.t)p
Maxwell’s Equations Become:
- - 19E 139 1 0E
: VxB=—"—=—"(rB,)=— —=
Boundary Conditions: c” ot ror c” ot
Vxi-_B8_ 9. 9B,
ot or ot
Differentiating the first by 6t and the second by dr:
2
G(10 (g Y\ 9Bs 108, 1 TE
ot\ r or orot r ot ¢ ot
9’E. 9B,
ar’  orot
’E. 10E. 1 9’E,
= 2 T~ =2
or r or ¢ ot
Longitudinal Motion 1 USPAS, Hampton, VA, Jan. 26-30, 2015 16
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® General solution of the form

+iwt
E =E(r)e
@ Which gives us the equation 0Ot order Bessel’s
. 5 / Equation

E'+-E +2 E =0=E(r)=EJ,| Zr .
r C C

0th order Bessel function

Jo(x)ocE(r)

First zero at J(2.405),
so lowest mode

c
J3(x)ocB(r) =2405—
" Jo 27R

s oE o (o) ; 0B, . ;
/ L =FE,—J,| —r e =—% =iwB(r)e"”
or c c ot
r=R
.1 w .1 w
= B(r)=-i—EJ)| —r|=i-EJ,|—r

o C C C C
Longitudinal Motion 1 USPAS, Hampton, VA, Jan. 26-30, 2015 17

Transit Factor

@ In the lowest pillbox mode, the field is uniform along the length (v,==), so
it will be changing with time as the particle is transiting, thus a very long
pillbox would have no net acceleration at all. We calculate a “transit

factor” Assume peak in middle

L/2
. ek, f cos(2/f£)dz LeEO sin(ﬂ) sin ﬂ) .
energy gain _ R v _ v v sinu
eE,L eE,L eE,L (ﬂ
v

T=

u

~———

- Example:

e *5 MeV Protons (v~.1c)
o * f=200MHz
* T=85%=2>u~1

R=2.405-5"=57cm
2nf
L =ul =49cm

Sounds kind of short, but is that an issue?

Longitudinal Motion 1 USPAS, Hampton, VA, Jan. 26-30, 2015 18
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Power dissipation in RF Cavities

® Energy stored in cavity

U—f(soE +#

0

Volume=LxR?

1 2R 2 27 1 v 272
2av = 7.9 of BV == & LE; [2m0T5( =1 ldrfe ~ e VEJ; (2.405)
e 2 0 c 2 1

=(.52)2~25%

® Power loss: Magnetic field at boundary Surface current
N R —— density J [A/m

JB ol = LBy = ol et = 1T b A

1 -

=J=—238, B
Hy
Cylinder surface 2 ends

Average power loss per unit area is \ A

[ )
() =(0) =5 e B

( )

R
2JZRL./2 )+2x2;rfjf(wr)rdr)
' e

Average over
cycle 2 405)
where Z, = =—=376.73 Q (impedanceof freespace)
Longitudinal Motion 1 USPAS, Hampton, VA, Jan. 26-30, 2015 19

@ The figure of merit for cavities is the Q, where
(Stored Energy) U
(Energy Lost per Cycle) - w;
e, E;nR’ LI} (2.405)

O=2r

2
0, £y 27RL 1+5 J(2.405) 1
Z, L CcE, =Z—
0

__Z,0Re, 2,405 Zice,

R R
20,11+ — 20,11+ —
p1+7] p1+7)

=2.405¢R
20 11+—
px( L)

@® So Q not very good for short, fat cavities!

Longitudinal Motion 1 USPAS, Hampton, VA, Jan. 26-30, 2015 20
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Drift Tube (Alvarez) Cavity

® Put conducting tubes in a larger pillbox, such that inside the tubes E=0

Bunch of pillboxes

F@@ - G - . -~

Gap spacing changes as Drift tubes contain quadrupoles
Psp g g to keep beam focused

d _v .~ velocity increases

Fermilab low energy linac

Inside

Longitudinal Motion 1 USPAS, Hampton, VA, Jan. 26-30, 2015 21

Shunt Impedance

@ If we think of a cavity as resistor in an electric circuit,
then

% -

@ By analogy, we define the “shunt impedance” for a

cavity as
R = (Voltage gain )2 _ (EOLT)2
* P P
2 2
= Zo £ 7 r We want R, to be as
7o, R 1+ 2)J2(2.405) large as possible
L
Longitudinal Motion 1 USPAS, Hampton, VA, Jan. 26-30, 2015 22
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Other Types of Accelerating Structures

® ; cavities

Longitudinal Motion 1 USPAS, Hampton, VA, Jan. 26-30, 2015 23

Sources of RF Power

@ For frequencies above ~300 MHz, the most common
power source is the “klystron”, which is actually a little
accelerator itself

fa—— Drift Space ———=
"Buncher" "Catcher"
Cavity Cavity

Density of Electrons

Cathode Collector

Electron Beam

Microwave Input Microwave Output

® Electrons are bunched and accelerated, then their
kinetic energy is extracted as microwave power.
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Sources of RF Power (cont’d)

® For lower frequencies (<300 MHz), the only sources significant
power are triode tubes, which haven’t changed much in decades.

53 MHz Power Amplifier
for Booster RF cavity

FNAL linac 200
MHz Power
Amplifier

Longitudinal Motion 1 USPAS, Hampton, VA, Jan. 26-30, 2015
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